From 1 - 10 / 38
  • From multiple observations during the day with UV spectrophotometers a daily value of the ozone column is calculated. This product is not publically available yet.

  • Download Service (WFS) for Automatic weather station (AWS) observations. Only the data from 2017-11-18 are publicly available. For older archive, please take contact with us. Only the data for station 'Zeebrugge' and 'Humain' are publicly available. For data from other stations, please take contact with us. Only the parameters 'pressure', 'air temperature', 'relative humidity', 'precipitation', 'wind speed' and 'wind direction' are publicly available. For other parameters, please take contact with us.

  • View Service (WMS) for Automatic weather station (AWS) observations. Only the data from 2017-11-18 are publicly available. For older archive, please take contact with us. Only the data for station 'Zeebrugge' and 'Humain' are publicly available. For data from other stations, please take contact with us. Only the parameters 'pressure', 'air temperature', 'relative humidity', 'precipitation', 'wind speed' and 'wind direction' are publicly available. For other parameters, please take contact with us.

  • View Service (WMS) for Synoptic observations

  • Hourly warnings of dangerous meteorological phenomena (wind, rain, ice or snow, fog, storm surge, thunderstorm) issued by the RMI, based on the estimated impact. This product is not publically available yet.

  • View Service (WMS) for Alaro over Belgium. All the parameters of the last run of Alaro can be visualized, most of them associated with a custom style.

  • A climate normal is an average over a 30-years period. The period 1981-2010 is the current reference period recommended by the World Meteorological Organization (WMO). Recent climate normals are available for any locations in Belgium and several parameters including air temperature, precipitations and solar radiation. Climate normals for the reference period 1981-2010 are available for air temperature, precipitation and derived parameters (e.g., annual number of summer days, annual number of precipitation days, etc.). For solar radiation, the reference period had to be adjusted to 1984-2013 because of data availability. These climate normals are available as maps and as table for each Belgian municipality.

  • Regional Climate Model: ALARO-0 model This data includes spatially-detailed climate projections for Belgium and can be used for climate-change impact assessments (historical and RCP simulations) and analysis of past climate (evaluation simulation). Note that the historical run will, by construction, not correspond to past observations. For further details please contact RMI or cordex@meteo.be. This dataset has been obtained by dynamical downscaling using the regional climate model ALARO-0 (Termonia et al., 2018a) in the context of the BELSPO-funded project CORDEX.be (Termonia et al, 2018b, www.euro-cordex.be). The downscaling methodology is in line with the guidelines of the Coordinated Regional Downscaling Experiment (CORDEX; Jacob et al. 2014) and follows the climate scenario's RCP2.6, RCP4.5 and RCP8.5 as suggested by the Intergovernmental Panel on Climate Change. The spatial resolution of the data is 4-km and the domain covers a region centered over Belgium. The temporal resolution of the data is daily over long continuous periods. The historical experiment covers the period 1976-2005 and the RCP scenarios cover the period 2007-2100. Precipitation data has undergone thorough validation (Van de Vyver et al., 2021) and investigation (Helsen et al., 2020). The 4-km simulations were performed in a double (one-way) nesting setup where the Belgian domain was nested in an ALARO-0 run over the EURO-CORDEX domain (Berckmans et al, 2021) with a resolution of 0.44° (≃ 50 km) and validated in Giot et al. (2016). Around Europe the latter was forced by the global climate model CNRM-CM5 (historical, RCP 2.6, RCP 4.5, RCP 8.5) that has a resolution of about 1.4° (≃ 155 km) and is part of the Coupled Model Intercomparison Project CMIP5. Giot et al., 2016. DOI: 10.5194/gmd-9-1143-2016 Helsen et al., 2020. DOI: 10.1007/s00382-019-05056-w Termonia et al., 2018a. DOI: 10.1016/j.cliser.2018.05.001 Termonia et al., 2018b. DOI: 10.5194/gmd-11-257-2018 Jacob et al., 2014. DOI: 10.1007/s10113-013-0499-2 Van de Vyver et al., 2021. DOI: 10.1175/JAMC-D-21-0004.1 Further info can be found on https://cordex.org/experiment-guidelines/ http://www.belspo.be/belspo/brain-be/projects/FinalReports/CORDEXbe_FinRep_AD.pdf Periods: * present climate: HIST_1975_2005 * future climate, 3 emission scenarios RCP 2.6, RCP 4.5, RCP 8.5: RCP26_2007_2100, RCP45_2007_2100, RCP85_2007_2100 Variables: 1. et0 = Reference Evapotranspiration [kg m-2 s-1]; to get this in mm/day, the data should be multiplied by 60*60*24 = 86400. It is calculated following the FAO method (Allen et al., 1998) using the Penman-Monteith equation for reference (potential) crop evapotranspiration 2. hurs = relative humidity [%] 3. pr = precipitation [kg m-2 s-1]; to get precipitation in mm/day, the data should be multiplied by 60*60*24 = 86400 4. rsds = global solar radiation [W m-2] 5. sfcWind = wind at 10 m [m s-1] 6. tas = near-surface (2 m) air temperature at 2 m [K] 7. tasmax = daily maximum near-surface (2 m) air temperature [K] 8. tasmin = daily minimum near-surface (2 m) air temperature [K] 9. et0 = Reference Evapotranspiration [kg m-2 s-1]; to get this in mm/day, the data should be multiplied by 60*60*24 = 86400

  • RMI operates a network of 17 automatic weather stations in Belgium. These weather stations report meteorological paramaters such as air pressure, temperature, relative humidity, precipitation (quantity,duration), wind (speed, gust, direction), sunshine duration, shortwave solar radiation and infrared radiation every 10 minutes.

  • The data consists in tables of estimated extreme precipitation quantities for precipitation durations ranging from 10 minutes to 30 days and return periods ranging from 2 to 200 years for each Belgian municipality.